Parameterized Complexity of Directed Steiner Tree on Sparse Graphs
نویسندگان
چکیده
We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterization is that both the directed and the undirected versions are W[2]-hard on general graphs, and hence unlikely to be fixed parameter tractable (FPT). The undirected Steiner Tree problem becomes FPT when restricted to sparse classes of graphs such as planar graphs, but the techniques used to show this result break down on directed planar graphs. In this article we precisely chart the tractability border for Directed Steiner Tree (DST) on sparse graphs parameterized by the number of non-terminals in the solution tree. Specifically, we show that the problem is fixed parameter tractable on graphs excluding a topological minor, but becomes W[2]-hard on graphs of degeneracy 2. On the other hand we show that if the subgraph induced by the terminals is required to be acyclic then the problem becomes FPT on graphs of bounded degeneracy. We further show that our algorithm achieves the best possible running time dependence on the solution size and degeneracy of the input graph, under standard complexity theoretic assumptions. Using the ideas developed for DST, we also obtain improved algorithms for Dominating Set on sparse undirected graphs. These algorithms are asymptotically optimal.
منابع مشابه
Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs
The well-known bidimensionality theory provides a method for designing fast, subexponentialtime parameterized algorithms for a vast number of NP-hard problems on sparse graph classes such as planar graphs, bounded genus graphs, or, more generally, graphs with a fixed excluded minor. However, in order to apply the bidimensionality framework the considered problem needs to fulfill a special densi...
متن کاملParameterized Complexity of Arc-Weighted Directed Steiner Problems
We start a systematic parameterized computational complexity study of three NP-hard network design problems on arc-weighted directed graphs: directed Steiner tree, strongly connected Steiner subgraph, and directed Steiner network. We investigate their parameterized complexities with respect to the three parameterizations: “number of terminals,” “an upper bound on the size of the connecting netw...
متن کاملOn subexponential parameterized algorithms for Steiner Tree and Directed Subset TSP on planar graphs
There are numerous examples of the so-called “square root phenomenon” in the field of parameterized algorithms: many of the most fundamental graph problems, parameterized by some natural parameter k, become significantly simpler when restricted to planar graphs and in particular the best possible running time is exponential in O( √ k) instead of O(k) (modulo standard complexity assumptions). We...
متن کاملParameterized Analysis of Online Steiner Tree Problems
Steiner tree problems occupy a central place in both areas of approximation and on-line algorithms. Many variants have been studied from the point of view of competitive analysis, and for several of these variants tight bounds are known. However, in several cases, worst-case analysis is overly pessimistic, and fails to explain the relative performance of algorithms. We show how parameterized an...
متن کاملThe Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems (Invited Talk)
Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path for every 1 ≤ i ≤ k. The special case Directed Steiner Tree (when we ask for paths from a root r to terminals t1, . . . , tk) is known to be fixed-parameter tractable parameterized by the number of term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013